

Supraglottic Airway Devices

Professor Cyprian Mendonca University Hospitals Coventry & Warwickshire NHS Trust

DAS Airway Revalidation Course

Supra-glottic Airway Devices

Supra-glottic Airway Devices How do trainees learn the skill?

Knowledge and skills of supra-glottic airway devices insertion techniques amongst anaesthetic trainees. WAM meeting , 2015; Dublin

Supraglottic airway devices

- How do they work?
- What is an ideal SAD
- Problems associated with SAD use
- Clinical uses of SAD
- A Practical approach of using SAD

$1981 \longrightarrow 1988$

Supraglottic Airway Devices

Positive pressure ventilation

Second generation SAD

- Improved pharyngeal seal
- Improved oesophageal seal
- Gastric drain tube
- Integrated bite block

LMA supreme vs LMA Protector

LMA ProtectorTMvs LMA SupremeTM

- One stage Intubation possible
- Two drainage tubes
- 16, 18 Fr size naso-gastric tube (through size 3, 4 and 5)

LMA Supreme vs LMA Proseal

	Proseal	Supreme
Leak Pressure: Cm H ₂ O	25 (6)	21 (5)
First attempt success rate	88	98

Seet E, et al. Safety and efficacy of laryngeal mask airway Supreme versus laryngeal mask airway ProSeal: a randomized controlled trial. *Eur J Anaesthesiol* 2010 **27**:602–7

Coventry Airway Course

Predictors of failed LMA unique[™]

- Failure in 1.1%
- 3 fold increase in failed mask ventilation
- 60% of failed LMA- hypoxia, hypercapnia, airway obstruction
- 42% inadequate ventilation

Ramachandran SK. Predictors and Clinical Outcomes from Failed Laryngeal Mask Airway Unique[™]. *Anesthesiology* 2012; **116**: 1217–26

Coventry Airway Course

Predictors of failed LMA unique[™]

Risk Factors

- Surgical table rotation
- Male sex
- Poor dentition
- Increased BMI

Ramachandran SK. Predictors and Clinical Outcomes from Failed Laryngeal Mask Airway Unique[™]. *Anesthesiology* 2012; **116**: 1217–26

Coventry Airway Course

A proposal for a new scoring system to predict difficult ventilation through a supraglottic airway

T. Saito^{1,*}, S. T. H. Chew², W. L. Liu³, K. K. Thinn⁴, T. Asai¹ and L. K. Ti^{3,4}

British Journal of Anaesthesia, 117 (S1): i83-i86 (2016)

14480 patients- difficult ventilation in 74 patients (0.5%)

Risk factors (score)

Male (1) Age > 45 (1) Short thyromental distance (3) Limited neck movement(2) Score >4 predicts difficult ventilation

Supraglottic airway devices

- How do they work?
- What is an ideal SAD
- Problems associated with SAD use
- Clinical uses of SAD
- A Practical approach of using SAD

Problems with LMA insertion

• Mask tip folded backwards

Problems with LMA insertion

- Down folding of Epiglottis
- Mask tip entering the glottis
- Epiglottis entering the orifice of SAD

NAP4 and SAD events :Total 34 events 1 ICU and 33 Anaesthesia related events

- Aspiration: 17 cases
- Airway Trauma
- Failed insertion
- Displacement after insertion
- Loss of airway during maintenance
- Extubation/ emergence

2 deaths and one temporary hypoxic brain damage

Common Themes

- Poor Patient Selection
- Use for inappropriate surgery
- Inexperience

Concerns with SAD

- Risk of Aspiration
- Air leak during PPV and hypoventilation/ gastric ventilation
- Intra-operative displacement
- Side effects

Sore throat, dysphagia, dysphonia. Nerve injury

Lingual Nerve (22)

Recurrent Laryngeal (17)

Hypoglossal (11)

Glossopharyngeal (3)

Inferior Alveolar (2)

Infra-orbital (1)

Thiruvenkatarajan V. et al. Anaesthesia , 2015; 70: 344-59

Supraglottic airway devices

- How do they work?
- What is an ideal SAD
- Problems associated with SAD use
- Clinical uses of SAD
- A Practical approach of using SAD

Clinical use of SAD

- Airway during resuscitation
- Airway during Anaesthesia
- Airway following failed intubation
- Conduit for tracheal intubation
- Difficult mask ventilation
- In obese patients

Cochrane Database of Systematic Reviews

Supraglottic airway devices versus tracheal intubation for airway management during general anaesthesia in obese patients (Review)

Nicholson A, Cook TM, Smith AF, Lewis SR, Reed SS

2 RCTs , P LMA vs ETT 70 patients BMI 43-45 for laparoscopy 134 patients , BMI 30 to 32 for peripheral surgery 4.2% required change to ETT Recovery profile was better in PLMA group

Plan B of Unanticipated failed intubation

Insertion of second generation SAD and oxygenation

Wake the patient up Intubate via SAD Continue surgery with SAD Tracheotomy or cricothyroidotomy

Fiberoptic assisted intubation via SADs

Insert second generation SAD Ensure oxygenation

Load the size 6 to 6.5 ETT over

Visualise the glottis

Advance the FOS into the trachea

Railroad the ETT over FOS

Confirm the correct placement

Fiberoptic assisted intubation via SADs

Fiberoptic assisted intubation via SADs Two stage fiberoptic assisted intubation

I-gel LMA Protector Proseal LMA

Insert the SAD and oxygenate the patient

Load the AIC over the FOS and advance the FOS into the trachea

AIC placed in the trachea

Remove the SAD

AIC in the Trachea

Railroad the tube over AIC

Supraglottic airway devices

- How do they work?
- What is an ideal SAD
- Problems associated with SAD use
- Clinical uses of SAD
- A Practical approach of using SAD

Clinical Scenario-2

- A 83 year old female patient scheduled for hemi-arthroplasty. She has history ischaemic heart disease and AF. Her BMI is 26. Airway examination: normal. No aspiration risk. Normal coagulation tests.
- 1. Spinal anaesthesia
- 2. General anaesthesia with SAD
- 3. General anaesthesia with ETT

A clinical Scenario -2

- Spinal anaesthesia fails
- GA with SAD planned
- SAD inserted- good ventilation
- Transferred to theatre and positioned-good ventilation
- Hypotension, anaesthesia depth reduced
- Starts spontaneous breathing but slightly obstructed pattern
- Jaw thirst-adequate ventilation- SpO₂ 96%

Only about 20 minutes left to complete surgery.

What you do next?

Scenario progression 1

- Continued jaw thrust
- Spontaneous ventilation continued
- Uneventful- Emergence & Recovery

Scenario Progression 2

- Jaw thrust continued
- Patients hyperventilates, isoflurane 0.7 Mac
 Fentanyl 50 mcg administered
- Hypoventilation—Apnoea
- IPPV –suboptimal but high FGF used to compensate leak
- SpO₂ maintained at 95 %
- Uneventful- Emergence & Recovery

Scenario progression 3

- Hypertension, tachycardia, isoflurane level increased
- Coughing
- Laryngospasm
- Airway obstruction
- Regurgitation
- Aspiration

Scenario 3

A 42 year old male patient, ASA 1, BMI 28

For Tympanoplasty = 30 minutes procedure

Pre-oxygenated IV induction with propofol + remi + atracurium SAD inserted

Indication to tracheal intubation

BMI 26, Arthroscopy-I gel size 4

Check the cuff pressure $60 \text{ cmH}_2\text{O}$

Check CO₂ trace, tidal volume, use low flow, assess the leak

A Practical approach to SAD

- Airway assessment and plan
- What is the surgery? Who is the surgeon
- What position?
- Is the airway access limited
- Benefit and risks of SAD vs tracheal intubation

A Practical approach to SAD

- Choose appropriate SAD and correct size
- Ensure adequate depth anaesthesia
- Inset SAD with care to avoid trauma
- Avoid repeated attempts
- Check cuff pressure (LMA)
- Check ventilation
- Check for leak-use low flow
- Assess airway pressure/ tidal volume/CO₂ trace/spirometry

Thank you

Summary

- Understand the limitations
- Careful patient selection
- Careful selection of surgery
- Ensure adequate depth of anaesthesia
- Use second generation SAD
- What is the plan if SAD fails/ malfunctions?
- What is the plan if gets displaced?